We may interpret partial differentiation in the following manner:
The derivative \(f_x(x,y)\) is obtained by applying \(\frac{\partial}{\partial x}\) to the function \(f(x,y)\) from the left.
\(\frac{\partial}{\partial x}\) is neither a number nor a function. It's something different that we call a (partial) differential operator. The same argument applies to \(\frac{\partial}{\partial y}\). This interpretation of differential operators turns out to be useful in many situations. For example, for any constants \(a, b\in \mathbb{R}\), we may consider the following operator \(D\):
If we apply this operator to the function \(f(x,y)\) from the left, we obtain \(af_x(x,y) + bf_y(x,y)\) as a result. That is,
\[Df(x,y) = af_x(x,y) + bf_y(x,y).\]
Note that the result is different if we apply the operator to \(f(x,y)\) from the right, which will be another differential operator rather than a function:
The result is a vector function composed of the partial derivatives of \(f(x,y)\).
The nabla may be regarded as a vector. Suppose we have a vector function \(\mathbf{u}(x,y) = (u(x,y), v(x,y))\). Then, we can take their dot (scalar) product:
Example. For \(a,b\in\mathbb{R}\), let \(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\) be a differential operator that operates on functions of class \(C^{\infty}\). Then, \(\frac{\partial^2}{\partial x\partial y} = \frac{\partial^2}{\partial y\partial x}\). Accordingly, the following holds:
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment