Mathematical Methods II
Lecture Notes
- Part 1. Multivariate functions
- Lecture 1
- Part 2. Differentiation of multivariate functions
- Lecture 2
- Lecture 3
- Lecture4
- Part 3. Integration of multivariate functions
- Lecture 5
- Lecture 6
- Lecture 7
- Part 4. Series
- Lecture 8
- Lecture 9
- Part 5. Differential equations
- Lecture 10
- Lecture 11
- Appendix: Calculus of complex-valued functions
- Part 6. Fourier series
- Lecture 12
- Fourier series: Introduction
- Fourier series and the heat equation
- Collections of periodic functions
- Fourier sine series, Fourier cosine series
- Uniform convergence of Fourier series
- Appendix: Arzelà's theorem
- Lecture 13
- Appendix: Calculus of complex-valued functions
- Lecture 14
See also: YouTube playlist: Mathematical Methods II
References
- G. S. Marshall (1998), Introductory Mathematics: Applications and Methods, Springer.
- P. P. G. Dyke (1999), Introduction to Laplace Transforms and Fourier Analysis, Springer.
- 加藤文元 (2019), 『大学教養 微分積分』数研出版 (In Japanese).
- 藤田宏・吉田耕作 (1991), 『現代解析入門』岩波書店 (In Japanese).
Comments