where \(t = x - a\). If this power series has a positive radius of convergence, and the function defined by it matches \(f(x)\) in the neighbor of \(x = a\), we say the function \(f(x)\) is analytic. \(f(x) = \sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n\) is called the Taylor series of \(f(x)\) at \(x=a\). A Taylor series at \(x = 0\) is called a Maclaurin series.
Example. Let us define the function \(f(x)\) on the open interval \((a-r, a+r)\) by the following power series
where \(r > 0\) is the radius of convergence of the power series. By Corollary 2 in Calculus of power series, \(a_n = \frac{f^{(n)}(a)}{n!}\) \((n = 0, 1, 2, \cdots)\). Therefore, \(f(x)\) is analytic and (Eq:eg1) gives the Taylor series. □
Let \(f(x)\) be a function of class \(C^\infty\) in a neighbor of \(x = 0\) and \(r > 0\). Suppose the following condition is satisfied:
(\(\dagger\)) There exists an \(M > 0\) such that, for all \(n \in \mathbb{N}_0\) and for all \(x\in \mathbb{R}\), if \(|x| < r\), then \(|f^{(n)}(x)| \leq M\).
Then, \(f(x)\) is analytic at \(x = 0\), and the radius of convergence of its Maclaurin series is at least \(r\).
Proof. Choose an \(x\) such that \(|x| < r\) and consider the finite Maclaurin expansion of \(f(x)\):
For the remainder \(R_n\), we have \(|R_n| \leq M\frac{|x|^n}{n!} \to 0\) (\(n \to \infty\)). Therefore, the above finite Maclaurin expansion converges as \(n\to \infty\) and the limit is equal to \(f(x)\). Thus, \(f(x)\) is analytic at \(x=0\) and its radius of convergence is at least \(r\). ■
Example. Let us show that the exponential function \(e^x\) is analytic and its Maclaurin series is given as
Let \(f(x) = e^x\). For any \(r > 0\), let \(M = e^r\). For any \(x\) such that \(|x| < r\) and for any \(n \in \mathbb{N}_0\), \(|f^{(n)}(x)| = e^x < M\) so that \(f(x)\) is analytic at \(x=0\). Since \(r > 0\) is arbitrary, the radius of convergence is \(+\infty\). For all \(n \in \mathbb{N}_0\), \(f^{(n)}(0) = e^0 = 1\) so that the Maclaurin series is given as in (Eq:Exp). □
Example. It is an exercise to show that the Maclaurin series of \(\sin x\) and \(\cos x\) are given as the following:
\[\begin{eqnarray}
\sin x &=& \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,\\
\cos x &=& \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots.
\end{eqnarray}\]
Also, show that the radii of convergence of these series are both \(+\infty\). □
Power functions and the binomial theorem
Given \(\alpha \in \mathbb{R}\) and \(n \in \mathbb{N}_0\), we define the binomial coefficient by
Note that the binomial coefficients are defined for all \(\alpha \in \mathbb{R}\).
If \(\alpha\) is a non-negative integer, then \(\binom{\alpha}{n}\) is the number of combinations when we choose \(n\) elements out of \(\alpha\) ("\(\alpha\) choose \(n\)") for \(n = 0, 1, 2, \cdots, \alpha\), or \(\binom{\alpha}{n} = 0\) for \(n > \alpha\).
If \(\alpha \in \mathbb{N}_0\), then this is a polynomial of degree \(\alpha\). Otherwise, \(\binom{\alpha}{n} \neq 0\) for all \(n\in\mathbb{N}_0\), and as \(n \to \infty\),
for \(|x| < 1\). This is the formula of geometric series. □
Example. Let us show that \(\arctan x\) is analytic and find its Maclaurin series and radius of convergence. Applying the binomial theorem to \((\arctan x)' = \frac{1}{1 + x^2}\), we have
\[\arctan x = \sum_{n=0}^{\infty}\frac{(-1)^n}{2n + 1}x^{2n+1} + C\]
where \(C\) is a constant. But \(\arctan(0) = 0\) so \(C = 0\). Therefore
\[\arctan x = \sum_{n=0}^{\infty}\frac{(-1)^n}{2n + 1}x^{2n+1}.\tag{Eq:atans}\]
The radius of convergence of the right-hand side of (Eq:atans) is equal to that of (Eq:atanps), which is 1 (verify!). Thus, \(\arctan x\) is analytic, and its radius of convergence is 1. □
List of frequently used Maclaurin series
It comes in handy if you memorize the following Maclaurin series. Make sure you can derive them.
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment