To compare (Eq:intD) and (Eq:intE), we need to compare the areas of \(D_{ij}\) and \(E_{ij}\). Note that it suffices to show that
The difficulty here is we don't know how to measure the area of \(D_{ij}\), \(\mu(D_{ij})\). On the other hand, we know that \(\mu(E_{ij}) = (a_{i+1}-a_{i})(c_{j+1} - c_{j})\) (as \(E_{ij} = [a_i, a_{i+1}]\times [c_j, c_{j+1}]\) is rectangular). To simplify the problem, we approximate the region \(D_{ij}\) by a parallelogram spanned by the two vectors
\[\begin{eqnarray}
\overrightarrow{q_{i,j}q_{i+1,j}} &=& (x(a_{i+1},c_j) - x(a_{i},c_j), y(a_{i+1},c_j) - y(a_{i},c_j)),\\
\overrightarrow{q_{i,j}q_{i,j+1}} &=& (x(a_{i},c_{j+1}) - x(a_{i},c_j), y(a_{i},c_{j+1}) - y(a_{i},c_j)).
\end{eqnarray}\]
We further approximate each component of these vectors by using the first-order Taylor expansion (Figure 4):
\[\begin{eqnarray}
x(a_{i+1},c_j) - x(a_{i},c_j) &\approx& x_u(a_i,c_j)(a_{i+1} - a_{i}),\\
y(a_{i+1},c_j) - y(a_{i},c_j) &\approx& y_u(a_i,c_j)(a_{i+1} - a_{i}),\\
x(a_{i},c_{j+1}) - x(a_{i},c_j) &\approx& x_v(a_i,c_j)(c_{j+1} - c_{j}),\\
y(a_{i},c_{j+1}) - y(a_{i},c_j) &\approx& y_v(a_i,c_j)(c_{j+1} - c_{j})
\end{eqnarray}\]
where \(x_u = \frac{\partial x}{\partial u}\), \(y_u = \frac{\partial y}{\partial u}\), \(x_v = \frac{\partial x}{\partial v}\), \(y_v = \frac{\partial y}{\partial v}\).
Figure 4. Approximating the region \(D_{ij}\) by the parallelogram \(P_{ij}\).
Thus, consider the parallelogram \(P_{ij}\) spanned by the following two vectors:
\[\begin{eqnarray}
\mathbf{u} &=& (x_u(a_i,c_i)(a_{i+1} - a_{i}),y_u(a_i,c_i)(a_{i+1} - a_{i})),\\
\mathbf{v} &=& (x_v(a_i,c_i)(c_{j+1} - c_{j}),y_v(a_i,c_i)(c_{j+1} - c_{j})).
\end{eqnarray}\]
We can approximate the area of \(D_{ij}\) by that of \(P_{ij}\) (Fig. 4), that is,
\[\mu(D_{ij}) \approx \mu(P_{ij}).\]
Now, recall the fact that the area of the parallelogram spanned by \(\mathbf{u} = (a, b)\) and \(\mathbf{v} = (c, d)\) is given by \(|ad - bc|\). Therefore, the area of \(P_{ij}\) is given by
\[\begin{eqnarray}
\mu(P_{ij}) &=& |x_u(a_i,c_i)(a_{i+1} - a_{i})\cdot y_v(a_i,c_i)(c_{j+1} - c_{j}) \nonumber\\
&& - y_u(a_i,c_i)(a_{i+1} - a_{i})\cdot x_v(a_i,c_i)(c_{j+1} - c_{j})|\\
&=& |x_u(a_i,c_i)y_v(a_i,c_j) - y_u(a_i,c_j)x_v(a_i,c_j)|(a_{i+1} - a_{i})(c_{j+1} - c_{j})\nonumber\\
\\
&=& |J(a_i,c_j)|\mu(E_{ij}).
\end{eqnarray}\]
Thus, if we take the limit of infinitesimally fine partitions of \(E_{ij}\), the sums in (Eq:intD) and (Eq:intE) will converge to the same value that is \(\iint_Df(x,y)dxdy\).
Example. Let us calculate \(\iint_{D}(x+y)dxdy\) where\(D\) is the square region surrounded by the following four lines
\[\begin{eqnarray*}
y &=& \frac{1}{2}x,\\
y &=& \frac{1}{2}x + \frac{5}{2},\\
y &=& -2x,\\
y &=& -2x + 5.
\end{eqnarray*}\]
Observe that the four vertices of this square are \((0,0)\), \((2,1)\), \((1, 3)\), and \((-1, 2)\) (Draw a figure!). Based on this, any point \((x,y)\) in the square can be represented as a linear combination of the two vectors \((2, 1)\) and \((-1, 2)\):
\[(x,y) = u(2,1) + v(-1, 2) = (2u -v, u + 2v), ~ 0\leq u, v \leq 1.\]
Thus, consider the change of variables
\[\begin{eqnarray*}x(u,v) &=& 2u - v,\\y(u,v) &=& u + 2v.\end{eqnarray*}\]
Then, the square region \(E = [0,1]\times [0, 1]\) on the \((u,v)\) plane is mapped to \(D\).
The Jacobian determinant is
\[\begin{eqnarray*}
J(u,v) =
\begin{vmatrix}
x_u(u,v) & x_v(u,v)\\
y_u(u,v) & y_v(u,v)
\end{vmatrix}
=
\begin{vmatrix}
2 & -1 \\
1 & 2
\end{vmatrix}
= 5.
\end{eqnarray*}\]
Thus, we have
\[\begin{eqnarray*}
\iint_D(x+y)dxdy &=& \iint_{E}\{(2u-v) + (u + 2v)\}5dudv\\
&=& 5\int_0^1\left(\int_0^1(3u +v)dv\right)du\\
&=&5\int_0^1\left[3uv + \frac{1}{2}v^2\right]_{v=0}^{v=1}du\\
&=&5\int_0^1\left(3u + \frac{1}{2}\right)du\\
&=&5\left[\frac{3}{2}u^2 + \frac{1}{2}u\right]_{u=0}^{u=1}\\
&=& 10.
\end{eqnarray*}\]
□
In general, an integral over the parallelogram region \(D\) with vertices \((0,0)\), \((a,b)\), \((c,d)\) and \((a + c, b + d)\) can be transformed to an integral over \(E = [0,1]\times [0,1]\) by the linear transformation
\[\begin{eqnarray}
x(u,v) &=& au + cv,\\
y(u,v) &=& bu + dv.
\end{eqnarray}\]
In such a case, we have
\[\iint_Df(x,y)dxdy = \iint_Ef(au+cv, bu + dv)|ad - bc|du dv\]
Another important change of variables is the polar coordinates:
\[\begin{eqnarray}
x(r, \theta) &=& r\cos\theta,\\
y(r, \theta) &=& r\sin\theta.
\end{eqnarray}\]
Then, the Jacobian determinant is
\[\begin{eqnarray}
J(r, \theta) &= &
\begin{vmatrix}
\cos\theta & \sin\theta\\
-r\sin\theta & r\cos\theta
\end{vmatrix}
= r(\cos^2\theta + \sin^2\theta) = r.
\end{eqnarray}\]
Example. Given
\[D = \{(x,y)\mid x\geq 0, y\geq 0, x^2 + y^2 \leq a^2\}\]
where \(a > 0\), let us find
\[\iint_D(x^2 + y^2)dxdy.\]
Using the polar coordinates \(x = r\cos\theta, y = r\sin \theta\), we have \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \(\left[0, \frac{\pi}{2}\right]\), respectively. Noting that \(x^2 + y^2 = r^2\), we have
\[\begin{eqnarray*}
\iint_D(x^2 + y^2)dxdy &=& \int_0^a\left(\int_0^{\frac{\pi}{2}}r^2\cdot r d\theta\right)dr\\
&=&\frac{\pi}{2}\int_0^ar^3dr\\
&=& \frac{\pi}{2}\left[\frac{r^4}{4}\right]_0^a\\
&=&\frac{a^4\pi}{8}.
\end{eqnarray*}\]
□
Comments
Post a Comment