Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Vector space of functions
Get link
Facebook
X
Pinterest
Email
Other Apps
-
We study the collection of functions \(\mathcal{R}_{2\pi}^2\) (square-integrable functions with period \(2\pi\)) as a vector space. We define the \(L^2\) norm and \(L^2\) inner product on this vector space so that we can investigate the ``geometric'' structure of the space of functions.
Let us show that \(\mathcal{R}_{2\pi}^{2}\), the set of square-integrable functions with period \(2\pi\), is a vector space over \(\mathbb{C}\). First, we need to define addition and scalar multiplication. Let \(f, g\in \mathcal{R}_{2\pi}^2\). We define \(f + g \in \mathcal{R}_{2\pi}^2\) by
\[(f+g)(x) = f(x) + g(x), ~ x \in \mathbb{R}.\tag{eq:add}\]
Note that the ``\(+\)'' on the left-hand side is defined between the two functions \(f\) and \(g\), whereas the ``\(+\)'' on the right-hand side is the addition between two complex numbers \(f(x)\) and \(g(x)\). Next, we define scalar multiplication. Let \(\alpha\in \mathbb{C}\) and \(f \in \mathcal{R}_{2\pi}^2\). We define \(\alpha f\) by
\[(\alpha f)(x) = \alpha f(x).\tag{eq:scale}\]
Note that the product on the left-hand side is between the scalar \(\alpha\) and the function \(f\), whereas the product on the right-hand side is between the two complex numbers \(\alpha\) and \(f(x)\).
Lemma
\(\mathcal{R}_{2\pi}^2\) is a vector space with vector addition (eq:add) and scalar multiplication (eq:scale).
Proof. We show that \(\mathcal{R}_{2\pi}^2\) satisfies all the axioms of the vector space. In the following, \(f, g, h\in\mathcal{R}_{2\pi}^2\) and \(\alpha, \beta \in \mathbb{C}\).
1. \(\mathcal{R}_{2\pi}^2\) is closed under vector addition.
Suppose \(f, g \in \mathcal{R}_{2\pi}^2\). We show \(f + g\in\mathcal{R}_{2\pi}^2\).
By assumption, \(\int_{\pi}^{\pi}|f(x)|^2\,dx < +\infty\) and \(\int_{-\pi}^{\pi}|g(x)|^2\,dx < +\infty\). Thus,
Thus, \(\mathcal{R}_{2\pi}^{2}\) is a vector space over \(\mathbb{C}\). ■
Definition (\(L^2\)-norm, mean-square norm)
Let \(f\) be a function on \((-\pi, \pi)\) that is square-integrable, i.e.,
\[\int_{-\pi}^{\pi}|f(x)|^2dx < +\infty.\]
We define the mean-square norm or \(L^2\) norm \(\|f\|\) by
\[\|f\| = \sqrt{\int_{-\pi}^{\pi}|f(x)|^2dx}.\]
Remark. The \(L\) in \(L^2\) stands for ``Lebesgue.'' suggesting that we should use the Lebesgue integral rather than the Riemann integral. But the term ``\(L^2\)'' is so widespread that we use it, although we only use the Riemann integral. □
Remark. The \(L^2\) inner product corresponds to the scalar (dot) product in a vector space. □
In general, an inner product is defined as follows.
Definition (Inner product (general))
Let \(V\) be a vector space over the field \(K\). An inner product \((\cdot, \cdot): V\times V \to K\) is a map with the following properties for all vectors \(x,y,z\in V\) and all scalars \(\alpha, \beta \in K\):
(Linearity in the first argument) \[(\alpha x + \beta y, z) = \alpha(x,z) + \beta(y,z)\]
(Positive definiteness) If \(x \neq 0\), \[(x,x) > 0.\]
Example. Consider the vector space \(\mathbb{R}^n\). For \(x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n\), the scalar product is defined as
\[(x,y) = \sum_{i=1}^{n}x_iy_i.\]
For each \(a \in \mathbb{R}\), its ``conjugate'' is the same \(a\): \(\overline{a} = a\). Thus,
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Generational growth Consider the following scenario (see the figure below): A single individual (cell, organism, etc.) produces \(j (= 0, 1, 2, \cdots)\) descendants with probability \(p_j\), independently of other individuals. The probability of this reproduction, \(\{p_j\}\), is known. That individual produces no further descendants after the first (if any) reproduction. These descendants each produce further descendants at the next subsequent time with the same probabilities. This process carries on, creating successive generations. Figure 1. An example of the branching process. Let \(X_n\) be the random variable representing the population size (number of individuals) of generation \(n\). In the above figure, we have \(X_0 = 1\), \(X_1=4\), \(X_2 = 7\), \(X_3=12\), \(X_4 = 9.\) We shall assume \(X_0 = 1\) as the initial condition. Ideally, our goal would be to find how the population size grows through generations, that is, to find the probability \(\Pr(X_n = k)\) for e...
In mathematics, we must prove (almost) everything and the proofs must be done logically and rigorously. Therefore, we need some understanding of basic logic. Here, I will informally explain some rudimentary formal logic. Definitions (Proposition): A proposition is a statement that is either true or false. "True" and "false" are called the truth values, and are often denoted \(\top\) and \(\bot\). Here is an example. "Dr. Akira teaches at UBD." is a statement that is either true or false (we understand the existence of Dr. Akira and UBD), hence a proposition. The following statement is also a proposition, although we don't know if it's true or false (yet): Any even number greater than or equal to 4 is equal to a sum of two primes. See also: Goldbach's conjecture Next, we define several operations on propositions. Note that propositions combined with these operations are again propositions. (Conjunction, logical "and"): Let \(P\)...
Comments
Post a Comment