Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Vector space of functions
Get link
Facebook
X
Pinterest
Email
Other Apps
-
We study the collection of functions \(\mathcal{R}_{2\pi}^2\) (square-integrable functions with period \(2\pi\)) as a vector space. We define the \(L^2\) norm and \(L^2\) inner product on this vector space so that we can investigate the ``geometric'' structure of the space of functions.
Let us show that \(\mathcal{R}_{2\pi}^{2}\), the set of square-integrable functions with period \(2\pi\), is a vector space over \(\mathbb{C}\). First, we need to define addition and scalar multiplication. Let \(f, g\in \mathcal{R}_{2\pi}^2\). We define \(f + g \in \mathcal{R}_{2\pi}^2\) by
\[(f+g)(x) = f(x) + g(x), ~ x \in \mathbb{R}.\tag{eq:add}\]
Note that the ``\(+\)'' on the left-hand side is defined between the two functions \(f\) and \(g\), whereas the ``\(+\)'' on the right-hand side is the addition between two complex numbers \(f(x)\) and \(g(x)\). Next, we define scalar multiplication. Let \(\alpha\in \mathbb{C}\) and \(f \in \mathcal{R}_{2\pi}^2\). We define \(\alpha f\) by
\[(\alpha f)(x) = \alpha f(x).\tag{eq:scale}\]
Note that the product on the left-hand side is between the scalar \(\alpha\) and the function \(f\), whereas the product on the right-hand side is between the two complex numbers \(\alpha\) and \(f(x)\).
Lemma
\(\mathcal{R}_{2\pi}^2\) is a vector space with vector addition (eq:add) and scalar multiplication (eq:scale).
Proof. We show that \(\mathcal{R}_{2\pi}^2\) satisfies all the axioms of the vector space. In the following, \(f, g, h\in\mathcal{R}_{2\pi}^2\) and \(\alpha, \beta \in \mathbb{C}\).
1. \(\mathcal{R}_{2\pi}^2\) is closed under vector addition.
Suppose \(f, g \in \mathcal{R}_{2\pi}^2\). We show \(f + g\in\mathcal{R}_{2\pi}^2\).
By assumption, \(\int_{\pi}^{\pi}|f(x)|^2\,dx < +\infty\) and \(\int_{-\pi}^{\pi}|g(x)|^2\,dx < +\infty\). Thus,
Thus, \(\mathcal{R}_{2\pi}^{2}\) is a vector space over \(\mathbb{C}\). ■
Definition (\(L^2\)-norm, mean-square norm)
Let \(f\) be a function on \((-\pi, \pi)\) that is square-integrable, i.e.,
\[\int_{-\pi}^{\pi}|f(x)|^2dx < +\infty.\]
We define the mean-square norm or \(L^2\) norm \(\|f\|\) by
\[\|f\| = \sqrt{\int_{-\pi}^{\pi}|f(x)|^2dx}.\]
Remark. The \(L\) in \(L^2\) stands for ``Lebesgue.'' suggesting that we should use the Lebesgue integral rather than the Riemann integral. But the term ``\(L^2\)'' is so widespread that we use it, although we only use the Riemann integral. □
Remark. The \(L^2\) inner product corresponds to the scalar (dot) product in a vector space. □
In general, an inner product is defined as follows.
Definition (Inner product (general))
Let \(V\) be a vector space over the field \(K\). An inner product \((\cdot, \cdot): V\times V \to K\) is a map with the following properties for all vectors \(x,y,z\in V\) and all scalars \(\alpha, \beta \in K\):
(Linearity in the first argument) \[(\alpha x + \beta y, z) = \alpha(x,z) + \beta(y,z)\]
(Positive definiteness) If \(x \neq 0\), \[(x,x) > 0.\]
Example. Consider the vector space \(\mathbb{R}^n\). For \(x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n\), the scalar product is defined as
\[(x,y) = \sum_{i=1}^{n}x_iy_i.\]
For each \(a \in \mathbb{R}\), its ``conjugate'' is the same \(a\): \(\overline{a} = a\). Thus,
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment