Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Kernels arising from the Fourier series
Get link
Facebook
X
Pinterest
Email
Other Apps
-
Here, we present a different way of looking at the Fourier series using kernels. We see that the partial Fourier sum of a function \(f(x)\) can be expressed as the convolution between \(f\) and the Dirichlet kernel. We have already seen that the partial Fourier sum converges uniformly to \(f\) if \(f(x)\) is continuously differentiable. Similarly, we show that the convolution of the function \(f\) and the Fejér kernel converges uniformly to \(f\), but this time, if \(f(x)\) is continuous. These kernels are used to prove the \(L^2\) convergence of the Fourier series.
Definition (Kernel function)
Let \(X\) be a set, and \(K: X\times X \to \mathbb{R}\) be a two-variable function. \(K(x,y)\) is said to be a kernel function (or integral kernel or nucleus) if it satisfies the following conditions:
(symmetry) For any \(x, y\in X\), \[K(x,y) = K(y,x).\]
is called the Dirichlet kernel. As the name suggests, it is a kernel function. \(D_n(\theta)\) is an even function of \(\theta\), and has a period of \(2\pi\). Thus, \(D_n(x - y)\) is symmetric with respect to \(x\) and \(y\). Using (eq:Ddef), we can show that it is also positive semi-definite (exercise!).
For the constant function \(f(x) = 1\), \(c_n = 0\) for \(n \neq 0\) and \(c_0 = 1\) so that \(S_n[f](x) = 1\) for all \(n\). Therefore
It is known that, if \(\{a_n\}\) converges, then \(\{b_n\}\) converges to the same value and the convergence is generally ``faster'' than \(\{a_n\}\). Based on this observation, we introduce another kernel representation of the Fourier series. For the partial sum \(S_n\) of the Fourier series of \(f\), we define Fejér's partial sum \(\sigma_n[f](x)\) by
\(F_n(x-y)\) is called the Fejér kernel. \(F_n(\theta)\) is an even function and has a period of \(2\pi\), so \(F_n(x-y)\) is symmetric. The positive semi-definiteness is inherited from that of the Dirichlet kernel.
For the constant function \(f(x) = 1\), \(S_n \equiv 1\) (\(n=0, 1, \cdots\)) so that \(\sigma_n(x) \equiv 1\), and hence
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment