Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Euclidean spaces
Get link
Facebook
X
Pinterest
Email
Other Apps
-
We would like to study multivariate functions (i.e., functions of many variables), continuous multivariate functions in particular. To define continuity, we need a measure of "closeness" between points. One measure of closeness is the Euclidean distance. The set \(\mathbb{R}^n\) (with \(n \in \mathbb{N}\)) with the Euclidean distance function is called a Euclidean space. This is the space where our functions of interest live.
The real line is a geometric representation of \(\mathbb{R}\), the set of all real numbers. That is, each \(a \in \mathbb{R}\) is represented as the point \(a\) on the real line.
The coordinate plane, or the \(x\)-\(y\) plane, is a geometric representation of \(\mathbb{R}^2\), the set of all pairs of real numbers. Each pair of real numbers \((a, b)\) is visualized as the point \((a, b)\) in the plane.
Remark. Recall that \(\mathbb{R}^2 = \mathbb{R}\times\mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}\) is the Cartesian product of \(\mathbb{R}\) with itself, its elements such as \((x, y)\) are ordered pairs of real numbers.
The coordinate space, or the \(x\)-\(y\)-\(z\) space, is a geometric representation of \(\mathbb{R}^3\), the set of all triples of real numbers.
Remark. Recall that \(\mathbb{R}^3 = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}\) is also a Cartesian product, its elements such as \((x, y, z)\) are ordered triples of real numbers.
We can naturally extend this idea. For any \(n\in\mathbb{N}\), we can consider an \(n\)-tuple of real numbers \((a_1, a_2, \cdots, a_n)\) and the set \(\mathbb{R}^n\) of all such \(n\)-tuples. We can "visualize" each element of \(\mathbb{R}^n\) as a "point"' in the \(n\)-dimensional space. For example, \((a_1, a_2, \cdots, a_n) \in \mathbb{R}^n\) is a point where the \(x_1\)-coordinate is \(a_1\), \(x_2\)-coordinate is \(a_2\), and so on.
Univariate functions (i.e., functions with one variable) are often defined on an interval. We would like to extend the notion of an interval to \(\mathbb{R}^n\). But first, we need the notion of distance.
Definition (Euclidean distance)
Let \(x = (x_1, x_2, \cdots, x_n)\) and \(y = (y_1, y_2, \cdots, y_n)\) be points in \(\mathbb{R}^n\). The (Euclidean) distance \(d(x,y)\) between \(x\) and \(y\) is defined as \[d(x,y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}.\tag{Eq:Distance}\]
Remark. The distance \(d(x,y)\) is also denoted as \(\|x - y\|\) or \(\|x - y \|_2\). Recall the definition of the length of an \(n\)-dimensional vector.
Definition (Euclidean space)
The set \(\mathbb{R}^n\) equipped with the distance defined in (Eq:Distance) is called the \(n\)-dimensional Euclidean space.
Remark. Sometimes, we say the pair \((\mathbb{R}^n, d)\), where \(d\) is the distance function, is the Euclidean space.
Remark. In mathematics, we generally use the term space to mean a set with some "structure." In the case of Euclidean space, the "structure" is specified by the distance. Other examples of spaces include vector space, probability space, topological space, Hilbert space, etc.
You might have learned the following lemma in Linear Algebra:
Lemma (Cauchy-Schwarz inequality)
For \(a = (a_1, a_2, \cdots, a_n), b = (b_1, b_2, \cdots, b_n) \in \mathbb{R}^n\), we have
Taking the square root of both sides, we have (Eq:CauchySchwarzIneq). ■
Remark: If we regard \(a, b\in\mathbb{R}^n\) as vectors in a vector space with the scalar product (i.e., dot product) \(\langle a, b\rangle\) and induced norm \(\|\cdot\|\), the Cauchy-Schwarz inequality reads:
\[|\langle a, b\rangle| \leq \|a\|\|b\|.\]
Theorem (Distance axioms)
(Non-negativity) For any \(x, y \in \mathbb{R}^n\), \(d(x,y) \geq 0\). In particular, \(d(x,y) = 0\) if and only if \(x = y\).
(Symmetry) For any \(x, y\in\mathbb{R}^n\), \(d(x,y) = d(y,x)\).
(Triangle inequality) For \(x,y,z\in \mathbb{R}^n\), \[d(x,z) \leq d(x,y) + d(y,z).\]
Proof. (1) and (2) are trivial. We show (3) only.
Let \(x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n), z=(z_1, z_2,\cdots,z_n)\), and \(a_i = x_i - y_i, b_i = y_i - z_i\). Note that \(x_i - z_i = (x_i - y_i) + (y_i - z_i) = a_i + b_i\). Then, we need to prove
\[\sum_{i=1}^{n}(a_i + b_i)^2 = \sum_{i=1}^{n}a_i^2 + \sum_{i=1}^{n}b_i^2 + 2\sum_{i=1}^{n}a_ib_i.\] Canceling common terms, the above inequality (Eq:Ineq1) to be proved becomes
But this is trivial from the Cauchy-Schwarz inequality (Eq:CauchySchwarzIneq) in the above Lemma. Now, trace this argument backward, and the triangle inequality follows from the Cauchy-Schwarz inequality. ■
Remark. For any set \(S\), if a function \(d: S\times S \to \mathbb{R}\) satisfies the above properties of distance, then this function \(d\) may be considered as a distance function in \(S\). The above properties can be used as axioms to define a distance in any set (if possible). Generally, a set \(S\) with a distance function \(d\) is called a metric space.
Example. For \(x, y \in \mathbb{R}^n\), let us define the following function:
\[d_1(x,y) = \sum_{i=1}^{n}|x_i - y_i|.\] This function satisfies all the distance axioms. Thus, \((\mathbb{R}^n, d_1)\) is a metric space. The function \(d_1\) is sometimes called the L1 distance. In comparison, the Euclidean distance is also called the L2 distance.
Definition (\(\varepsilon\)-neighbor)
For \(x \in \mathbb{R}^n\) and \(\varepsilon > 0\), the \(\varepsilon\)-neighbor of \(x\) is defined as
\(N_{\varepsilon}(x)\) is also called the open ball with radius \(\varepsilon\) centered at \(x\).
Example
In \(\mathbb{R}\), \(N_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)\) is an open interval.
In \(\mathbb{R}^2\), let \(a = (a_1, a_2)\). Then, \(N_{\varepsilon}(a) = \{(x_1,x_2) \in \mathbb{R}^2 | (x_1 - a_1)^2 + (x_2 - a_2)^2 < \varepsilon^2\}\) is the interior of the circle with radius \(\varepsilon\) centered at \(a\).
In \(\mathbb{R}^3\), an \(\varepsilon\)-neighbor is the interior of a sphere.
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment