Any covariance matrix is positive semi-definite: A proof
Let \(\mathbf{X} = (X_1, X_2, \cdots, X_n)^\top \in \mathbb{R}^n\) be a vector of random variables. The covariance matrix \(\Sigma\) of \(\mathbf{X}\) is a square (\(n\times n\)) matrix whose elements are covariances between the components of \(\mathbf{X}\). That is,
\[\Sigma_{ij} = \mathrm{Cov}(X_i,X_j)\]
where \(\mathrm{Cov}(X_i,X_j)\) is the covariance between \(X_i\) and \(X_j\), \(i,j = 1, 2, \cdots, n\):
\[\mathrm{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].\]
Here, \(\mathbb{E}[\cdot]\) indicates the expectation value of a random variable. Any covariance matrix has the following properties:
- Symmetric. That is, \[\Sigma = \Sigma^\top.\]
- Positive semi-definite. That is,\[\forall \mathbf{v} \in \mathbb{R}^n, \mathbf{v}^\top\Sigma\mathbf{v} \geq 0.\]
See also: Positive definite matrix (Wolfram MathWorld)
The symmetry is obvious from the definition of the covariance matrix.
Now, let us prove that the covariance matrix is positive semi-definite. First, note that the covariance matrix can be expressed as
\[\Sigma = \int_{\mathbb{R}^n}\rho(\mathbf{x})(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^\top \, d\mathbf{x}\]
where \(\rho(\mathbf{x})\) is the density of \(\mathbf{X}\), and
\[\boldsymbol{\mu} = \mathbb{E}[\mathbf{X}] = \int_{\mathbb{R}^n}\rho(\mathbf{x})\mathbf{x} \,d\mathbf{x} \in \mathbb{R}^n\]
is the expectation value of \(\mathbf{X}\).
Let \(\mathbf{v}\in \mathbb{R}^n\) be an arbitrary vector. We have
\[
\begin{eqnarray}\mathbf{v}^{\top}\Sigma\mathbf{v} &=& \int_{\mathbb{R}^n}\rho(\mathbf{x})\mathbf{v}^{\top}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\mathbf{v}\,d\mathbf{x}\\
&=& \int_{\mathbb{R}^n}\rho(\mathbf{x})[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]^{\top}[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]\,d\mathbf{x}\\
&=& \int_{\mathbb{R}^n}\rho(\mathbf{x})[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]^2\,d\mathbf{x} \geq 0 \end{eqnarray}\]
because the integrand is non-negative.
Remark (2022-10-14): In the initial version of this post, I used the eigenvalue decomposition of the covariance matrix to prove the positive semi-definiteness. But that is not only unnecessary but overly complicated. The above proof is simpler and more direct.
Comments
Post a Comment