Any covariance matrix is positive semi-definite: A proof

Let \(\mathbf{X} = (X_1, X_2, \cdots, X_n)^\top \in \mathbb{R}^n\) be a vector of random variables. The covariance matrix \(\Sigma\) of \(\mathbf{X}\) is a square (\(n\times n\)) matrix whose elements are covariances between the components of \(\mathbf{X}\). That is,

\[\Sigma_{ij} = \mathrm{Cov}(X_i,X_j)\]

where \(\mathrm{Cov}(X_i,X_j)\) is the covariance between \(X_i\) and \(X_j\), \(i,j = 1, 2, \cdots, n\): 

\[\mathrm{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].\]

Here, \(\mathbb{E}[\cdot]\) indicates the expectation value of a random variable. Any covariance matrix has the following properties:

  1. Symmetric. That is, \[\Sigma = \Sigma^\top.\]
  2. Positive semi-definite. That is,\[\forall \mathbf{v} \in \mathbb{R}^n, \mathbf{v}^\top\Sigma\mathbf{v} \geq 0.\]

See also: Positive definite matrix (Wolfram MathWorld)

The symmetry is obvious from the definition of the covariance matrix. 

Now, let us prove that the covariance matrix is positive semi-definite. First, note that the covariance matrix can be expressed as
\[\Sigma = \int_{\mathbb{R}^n}\rho(\mathbf{x})(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^\top \, d\mathbf{x}\]
where \(\rho(\mathbf{x})\) is the density of \(\mathbf{X}\), and
\[\boldsymbol{\mu} = \mathbb{E}[\mathbf{X}] = \int_{\mathbb{R}^n}\rho(\mathbf{x})\mathbf{x} \,d\mathbf{x} \in \mathbb{R}^n\]
is the expectation value of \(\mathbf{X}\). 

Let \(\mathbf{v}\in \mathbb{R}^n\) be an arbitrary vector. We have
\[ \begin{eqnarray}\mathbf{v}^{\top}\Sigma\mathbf{v} &=& \int_{\mathbb{R}^n}\rho(\mathbf{x})\mathbf{v}^{\top}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\mathbf{v}\,d\mathbf{x}\\ &=& \int_{\mathbb{R}^n}\rho(\mathbf{x})[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]^{\top}[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]\,d\mathbf{x}\\ &=& \int_{\mathbb{R}^n}\rho(\mathbf{x})[(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{v}]^2\,d\mathbf{x} \geq 0 \end{eqnarray}\]
because the integrand is non-negative.

Remark (2022-10-14): In the initial version of this post, I used the eigenvalue decomposition of the covariance matrix to prove the positive semi-definiteness. But that is not only unnecessary but overly complicated. The above proof is simpler and more direct.

Comments

Popular posts from this blog

Applications of multiple integrals

Birth process

Improper multiple integrals