Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Monotone sequences and Cauchy sequences
Get link
Facebook
X
Pinterest
Email
Other Apps
-
Deciding whether a given sequence \(\{a_n\}\) converges or diverges is usually very difficult. Sometimes it is possible to decide if a sequence converges without knowing its limit explicitly if certain conditions are met.
This sequence is monotone decreasing but it cannot be arbitrarily small because it is also bounded below. Therefore it must converge to some number (namely \(\sqrt{2}\) in this case). That such a real number exists is guaranteed by the continuity of real numbers. □
The observation in the above example can be generalized.
Theorem (Monotone convergence theorem)
Any bounded monotone sequence converges.
Proof. Suppose \(\{a_n\}\) is a bounded monotone increasing sequence. Then the set \(S = \{a_n\mid n\in\mathbb{N}\}\) is bounded above so that its supremum \(\alpha\) exists. For any \(\varepsilon > 0\), \(\alpha - \varepsilon\) is not an upper bound of \(S\) so there exists \(N\in\mathbb{N}\) such that \(\alpha - \varepsilon < a_N\). Since \(\{a_n\}\) is monotone increasing, for all \(n\geq N\), \(a_n \geq a_N > \alpha - \varepsilon\). Since \(\alpha\) is the supremum of \(\{a_n\}\), we have \(a_n \leq \alpha < \alpha + \varepsilon\). Thus we have \(\alpha -\varepsilon < a_n < \alpha + \varepsilon\) or \(|a_n -\alpha| < \varepsilon\) for all \(n\geq N\). Hence \(\lim_{n\to\infty}a_n = \alpha\).
We can prove similarly for the case of a bounded monotone decreasing sequence. ■
Definition (Cauchy sequence)
The sequence \(\{a_n\}\) is said to be a Cauchy sequence if and only if the following condition is met.
For any \(\varepsilon > 0\), there exists \(N\in\mathbb{N}\) such that for any \(k, l\geq N\), \(|a_k - a_l| < \varepsilon\).
Or, in a logical form,
\[\forall \varepsilon > 0, \exists N\in\mathbb{N}, \forall k,l\in\mathbb{N} ~ (k, l \geq N \implies |a_k - a_l| < \varepsilon).\]
Theorem
Any convergent sequence is a Cauchy sequence.
Proof. Suppose \(\lim_{n\to\infty}a_n = \alpha\). For any \(\varepsilon > 0\), there exists \(N\in\mathbb{N}\) such that for all \(k,l \geq N\),
\(2\varepsilon\) is an arbitrary positive real number. Therefore, \(\{a_n\}\) is a Cauchy sequence. ■
The converse is also true, but the proof is beyond the scope of this lecture.
Theorem
Any Cauchy sequence converges.
Corollary
A sequence converges if and only if it is a Cauchy sequence.
For later convenience, we provide the following theorem without proof.
Theorem (Bolzano-Weierstrass Theorem)
Let \(\{a_n\}\) be a sequence such that \(a_n \in [c, d]\) for all \(n\in\mathbb{N}\). Then there exists a subsequence \(\{a_{n_k}\}\) of \(\{a_n\}\) that converges to a value in the closed interval \([c,d]\).
Proof. Exercise. (Hint: use the squeeze theorem) ■
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is...
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with \(n_0\) cells at time \(t = 0\). Assume that the probability that any individual cell divides in the time interval \((t, t + \delta t)\) is proportional to \(\delta t\) for small \(\delta t\). Further assume that each cell division is independent of others. Let \(\lambda\) be the birth rate. The probability of a cell division for a population of \(n\) cells during \(\delta t\) is \(\lambda n \delta t\). We assume that the probability that two or more births take place in the time interval \(\delta t\) is \(o(\delta t)\). That is, it can be ignored. Consequently, the probability that no cell divides during \(\delta t\) is \(1 - \lambda n \delta t - o(\delta t)\). Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Consider integrating a function \(f(x,y)\) over a region \(D\) which may not be bounded or closed. In the case of a univariate function, this corresponds to the improper integral where we took the limits of the endpoints of a closed interval. In the case of multiple integrals, we adopt the notion of a "sequence of regions." Consider a sequence of regions \(\{K_n\}\) where each \(K_n\) is a subset of \(\mathbb{R}^2\) that satisfies the following conditions: (a) \(K_1 \subset K_2\)\(\subset \cdots \subset\) \(K_n \subset K_{n+1} \subset \cdots\). (b) For all \(n\in \mathbb{N}\), \(K_n \subset D\). (c) For all \(n \in\mathbb{N}\), \(K_n\) is bounded and closed. (d) For any bounded closed set \(F\) that is included in \(D\) (i.e., \(F \subset D\)), if \(n\) is sufficiently large, then \(F \subset K_n\). In other words: for all bounded closed \(F \subset D\), there exists some \(N\in \mathbb{N}\) such that, for all \(n\in \mathbb{N}\), if \(n \geq N\) then \(F \subset K_...
Comments
Post a Comment