Properties of the limit of functions
The limit of functions has properties that are similar to the limit of sequences.
Theorem (Properties of the limit of function)
Let \(f(x)\) and \(g(x)\) be functions such that \(\lim_{x\to a}f(x) = \alpha\) and \(\lim_{x\to a}g(x) = \beta\). The following hold.
- For any constants \(k, l\in\mathbb{R}\), \[\lim_{x\to a}(kf(x) + lg(x)) = k\alpha + l\beta.\]
- \[\lim_{x\to a}f(x)g(x) = \alpha\beta.\]
- If \(\beta \neq 0\), \[\lim_{x\to a}\frac{f(x)}{g(x)} = \frac{\alpha}{\beta}\]
Proof. In the following \(\varepsilon\) is always an arbitrary positive real number, and \(D_f\) and \(D_g\) are the domains of the functions \(f\) and \(g\), respectively.
1. Let \(M = \max\{|k|, |l|\} + 1\). Then \(\frac{\varepsilon}{2M}\) is also positive and real. Since \(\lim_{x\to a}f(x) = \alpha\), there exists \(\delta_1 > 0\) such that for any \(x\in D_f\) if \(0 < |x - a| < \delta_1\) then \(|f(x) - \alpha| < \frac{\varepsilon}{2M}\). Similarly, there exists \(\delta_2 > 0\) such that for any \(x \in D_g\) if \(0 < |x - a| < \delta_2\) then \(|g(x) - \beta| < \frac{\varepsilon}{2M}\). Let \(\delta = \min\{\delta_1, \delta_2\}\). If \(|x - a| < \delta\), then
\[
\begin{eqnarray*}
|(kf(x) + lg(x)) - (k\alpha + l\beta)| &=& |k(f(x) - \alpha) + l(g(x) - \beta)|\\
&\leq& |k||f(x) - \alpha| + |l||g(x) - \beta|\\
&< & M\cdot\frac{\varepsilon}{2M} + M\cdot\frac{\varepsilon}{2M}\\
&=& \varepsilon.
\end{eqnarray*}
\] Hence, \[\lim_{x\to a}(kf(x) + lg(x)) = k\alpha + l\beta.\]
2. Since \(\lim_{x\to a}f(x) = \alpha\), there exists \(\delta_0 > 0\) such that for any \(x\in D_f\), \(0 < |x - a| < \delta_0\) implies \(|f(x) - \alpha| < \varepsilon\). Then \(\alpha - \varepsilon < f(x) < \alpha + \varepsilon\), and hence
\[|f(x)| \leq \max\{|\alpha - \varepsilon|, |\alpha + \varepsilon|\}.\] Let us define \[M = \max\{|\alpha - \varepsilon|, |\alpha + \varepsilon|, |\beta|\}.\] Since \(\varepsilon > 0\), at least one of \(|\alpha - \varepsilon|\) or \(|\alpha + \varepsilon|\) is not 0 so that \(M > 0\). Again, we can find \(\delta_1 > 0\) such that \(|x - a| < \delta_1\) implies \(|f(x) - \alpha| < \frac{\varepsilon}{2M}\). Similarly, we can find \(\delta_2 > 0\) such that \(|x - a| < \delta_2\) implies \(|g(x) - \beta| < \frac{\varepsilon}{2M}\). Let \(\delta = \min\{\delta_0, \delta_1, \delta_2\}\). If \(0 < |x - a| < \delta\), we have
\[
\begin{eqnarray*}
|f(x)g(x) - \alpha\beta| &=& |f(x)g(x) -f(x)\beta + f(x)\beta - \alpha\beta|\\
&\leq& |f(x)g(x) -f(x)\beta| + |f(x)\beta - \alpha\beta|\\
&=& |f(x)||g(x) -\beta| + |f(x) - \alpha||\beta|\\
&<& M\cdot\frac{\varepsilon}{2M} + \frac{\varepsilon}{2M}\cdot M\\
&=& \varepsilon.
\end{eqnarray*}
\] Hence, \[\lim_{x\to a}f(x)g(x) = \alpha\beta.\]
3. It suffices to show that \[\lim_{x \to a}\frac{1}{g(x)} = \frac{1}{\beta}.\] We can find \(\delta_0 > 0\) such that \(0 < |x - a| < \delta_0\) implies \(|g(x) - \beta| < \frac{|\beta|}{2}\). By the triangle inequality, \[||g(x)| - |\beta|| \leq |g(x) - \beta| < \frac{|\beta|}{2},\] we have, in particular, \[|g(x)| > \frac{|\beta|}{2} > 0\] so that \[\frac{1}{|g(x)|} < \frac{2}{|\beta|}.\] Again, we can find \(\delta_1 > 0\) such that \(|x - a| < \delta_1\) implies \(|g(x) - \beta| < \frac{|\beta|^2\varepsilon}{2}\). Let \(\delta = \min\{\delta_0, \delta_1\}\). If \(0 < |x - a| < \delta\), we have
\[\begin{eqnarray*}
\left|\frac{1}{g(x)} - \frac{1}{\beta}\right| &=& \left|\frac{\beta - g(x)}{g(x)\beta}\right|\\
&=& \frac{|g(x) - \beta|}{|g(x)||\beta|}\\
&<& \frac{|\beta|^2\varepsilon}{2}\cdot\frac{2}{|\beta|}\cdot\frac{1}{|\beta|}\\
&=& \varepsilon.
\end{eqnarray*}
\]
■
Remark. Part 1 of this theorem shows that
\[\lim_{x\to a}(kf(x) + lg(x)) = k\lim_{x\to a}f(x) + l\lim_{x\to a}g(x)\]
which demonstrates the linearity of the limit operation. □
Theorem (Limit of a composite function)
Let \(f(x)\) and \(g(x)\) be functions such that \(\lim_{x \to a}f(x) = b\) and \(\lim_{x\to b}g(x) = \alpha\). Then
\[\lim_{x\to a}(g\circ f)(x) = \alpha\]
where \(g\circ f\) is the function composition of \(g\) after \(f\) (or \(f\) then \(g\)), that is, \((g\circ f)(x) = g(f(x))\).
Proof. Let \(\varepsilon\) be an arbitrary positive real number. As usual, we can find \(\delta_1 > 0\) such that \(0 < |x - b| < \delta_1\) implies \(|g(x) - \alpha| < \varepsilon\). Similarly, we can find \(\delta > 0\) such that \(0 < |x - a| < \delta\) implies \(|f(x) - b| < \delta_1\). Then \(0 < |x - a| < \delta\) implies \(|g(f(x)) - \alpha| < \varepsilon\). Hence
\[\lim_{x \to a}g(f(x)) = \alpha.\]
■
Example. If \(x\) approaches \(a\), then \(x\) approaches \(a\) (tautology!). Therefore
\[\lim_{x\to a}x = a.\]
By the above theorems, we have, for example,
\[\begin{eqnarray}
\lim_{x\to a}2x &=& 2a,\\
\lim_{x\to a}x^2 &=& a^2,\\
\lim_{x\to a}(x^2 + 2x) &=& a^2 + 2a.
\end{eqnarray}\]
In general, if \(f(x)\) is a polynomial of \(x\) (such as above), then
\[\lim_{x \to a}f(x) = f(a).\]
□
Example. Consider
\[\lim_{x \to 1}\frac{x^3 - 1}{x - 1}.\]
Since we can factorize as \(x^3 - 1 = (x-1)(x^2 + x + 1)\), we have
\[\frac{x^3 - 1}{x - 1} = \frac{(x-1)(x^2 + x + 1)}{x-1} = x^2 + x + 1\]
which is a polynomial of \(x\). Therefore,
\[\lim_{x \to 1}\frac{x^3 - 1}{x - 1} = \lim_{x \to 1}(x^2 + x + 1) = 3.\]
□
Comments
Post a Comment