Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Riemann integral
Get link
Facebook
X
Pinterest
Email
Other Apps
-
You may have learned that the integral is the inverse operation of differentiation. Here, we define the integral as the calculation of area. This approach has an advantage that can be easily extended to higher dimensions.
Definition (Partition of an interval)
The partition of the closed interval \([a,b]\) is a finite sequence \(\Delta = \{x_n\}\) of the form
Let \(f(x)\) be a bounded function on \([a,b]\). Let us define the following quantities:
\[
\begin{eqnarray}
M_i &=& \sup\{f(x)\mid x_{i} \leq x \leq x_{i+1}\},\\
m_i &=& \inf\{f(x)\mid x_{i} \leq x \leq x_{i+1}\}.
\end{eqnarray}
\]
Remark. If \(f(x)\) is continuous on \([a,b]\), \(f(x)\) has maximum and minimum values on each \([x_i, x_{i+1}]\) (the Extreme Value Theorem). Thus, \(M_i\) and \(m_i\) are the maximum and minimum values. If \(f(x)\) is not continuous, it may not have maximum or minimum values. Nevertheless, since we are assuming \(f(x)\) is bounded, supremum and infimum do exist. Thus \(M_i\) and \(m_i\) are well-defined. □
are called the upper Riemann sum and lower Riemann sum, respectively, with respect to the partition \(\Delta\).
Remark. Upper or lower Riemann sums are also known as upper and lower Darboux sums. □
Each \(m_i\cdot(x_{i+1}-x_{i})\) (or \(M_i\cdot(x_{i+1}-x_{i})\)) represents the area of a rectangle with the ``width'' of \(x_{i+1} - x_{i}\) and the ``height'' of \(m_i\) (or \(M_i\)). Note that \(m_i\) (or \(M_i\)) can be negative. So this area is a signed area.
The Riemann sums approximate the signed area enclosed by the graph of \(y=f(x)\), the \(x\)-axis, \(x = a\) and \(x = b\). Clearly,
\[s_{\Delta} \leq S_{\Delta}.\]
Definition (Refinement of a partition)
Let \(\Delta = \{x_0, x_1, \cdots, x_n\}\) and \(\Delta' = \{x_0',x_1',\cdots, x_m'\}\) be partitions of \([a,b]\). \(\Delta'\) is said to be a refinement of \(\Delta\) if each \(a_i\in\Delta\) is equal to some \(a_j'\in \Delta'\).
Remark. If \(x_i = x_j'\) and \(x_{i+1} = x_{j+k}'\), then the sub-interval \([x_{i}, x_{i+1}]\) is partitioned into smaller sub-intervals
where \(s_{\Delta}\) and \(s_{\Delta'}\) are lower Riemann sums of \(f(x)\) with respect to \(\Delta\) and \(\Delta'\), respectively, and \(S_{\Delta}\) and \(S_{\Delta'}\) are the corresponding upper Riemann sums.
Proof. Let \(I_i = [x_{i}, x_{i+1}]\) be a sub-interval of \(\Delta\), and \(I_j' = [x_{j}', x_{j+1}']\) be a sub-interval of \(\Delta'\) such that \(I_j'\subset I_i\).
Let \(m_i = \inf\{f(x)\mid x \in I_i\}\) and \(m_j' = \inf\{f(x)\mid x \in I_j' \}\).
Then, \[m_i \leq m_j'\] because \(m_i\) is at least as low as \(m_j'\) (since \(I_i\) covers a wider range than \(I_j'\)).
If \(x_i = x_j'\) and \(x_{i+1} = x_{j+k}'\), then
Therefore the sequence of the lower Riemann sums is monotone increasing with respect to refinements of partitions, and is bounded above by upper Riemann sums (e.g., \(S_{\Delta}\), etc). By the continuity axiom of real numbers, \(\sup_{\Delta} s_{\Delta}\) exists (\(\sup_{\Delta}\) means supremum over all possible partitions \(\Delta\)). Similarly, \(\inf_{\Delta}S_{\Delta}\) exists. Clearly,
Based on the above observation, we define the definite integral as follows.
Definition (Definite integral)
Let \(f(x)\) be a bounded function on the closed interval \([a,b]\). Let \(s_{\Delta}\) and \(S_{\Delta}\) be the lower and upper Riemann sums of \(f(x)\) with respect to the partition \(\Delta\). The function \(f(x)\) is said to be Riemann-integrable, or simply integrable, if \(\sup_{\Delta}s_{\Delta} = \inf_{\Delta}S_{\Delta}\) and we write
This function is not Riemann-integrable. Take any sub-interval \([a, b]\) of any partition \(\Delta\). Since rational numbers are dense, there is always at least one rational number in \([a,b]\). Hence \(S_{\Delta} = 1\). Similarly, irrational numbers are dense so that \(s_{\Delta} = 0\). Therefore
Open sets In \(\mathbb{R}\), we have the notion of an open interval such as \((a, b) = \{x \in \mathbb{R} | a < x < b\}\). We want to extend this idea to apply to \(\mathbb{R}^n\). We also introduce the notions of bounded sets and closed sets in \(\mathbb{R}^n\). Recall that the \(\varepsilon\)-neighbor of a point \(x\in\mathbb{R}^n\) is defined as \(N_{\varepsilon}(x) = \{y \in \mathbb{R}^n | d(x, y) < \varepsilon \}\) where \(d(x,y)\) is the distance between \(x\) and \(y\). Definition (Open set) A subset \(U\) of \(\mathbb{R}^n\) is said to be an open set if the following holds: \[\forall x \in U ~ \exists \delta > 0 ~ (N_{\delta}(x) \subset U).\tag{Eq:OpenSet}\] That is, for every point in an open set \(U\), we can always find an open ball centered at that point, that is included in \(U\). See the following figure. Perhaps, it is instructive to see what is not an open set. Negating (Eq:OpenSet), we have \[\exists x \in U ~ \forall \delta > 0 ~ (N_{\delta}(x) \not
We would like to study multivariate functions (i.e., functions of many variables), continuous multivariate functions in particular. To define continuity, we need a measure of "closeness" between points. One measure of closeness is the Euclidean distance. The set \(\mathbb{R}^n\) (with \(n \in \mathbb{N}\)) with the Euclidean distance function is called a Euclidean space. This is the space where our functions of interest live. The real line is a geometric representation of \(\mathbb{R}\), the set of all real numbers. That is, each \(a \in \mathbb{R}\) is represented as the point \(a\) on the real line. The coordinate plane , or the \(x\)-\(y\) plane , is a geometric representation of \(\mathbb{R}^2\), the set of all pairs of real numbers. Each pair of real numbers \((a, b)\) is visualized as the point \((a, b)\) in the plane. Remark . Recall that \(\mathbb{R}^2 = \mathbb{R}\times\mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}\) is the Cartesian product of \(\mathbb{R}\) with i
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is sai
Comments
Post a Comment