Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
Applications of integrals (1): Length of a curve
Get link
Facebook
X
Pinterest
Email
Other Apps
-
As an application of integrals, we consider the length of a curve. Specifically, we consider curves in the 2-dimensional space defined parametrically.
Let and be functions defined on an interval containing the closed interval . If moves in , the point on moves smoothly, drawing a curve. Let us denote this curve by . Let and be the end points of the curve . We want to measure the ``length'' of the curve . But what is the length of a \emph{curve}, anyway? We do know how to calculate the length of a line segment (Pythagorean theorem). So, let us approximate the curve by line segments. Consider the partition of the closed interval :
Then , , , , , are all on . We can approximate the curve by connecting the line segments , , , . By adding the lengths of these segments, we can approximate the length of the curve . The length of is given by
so the approximate length of is given by
By the Mean Value Theorem, for each , there exist such that
Defining the birth process Consider a colony of bacteria that never dies. We study the following process known as the birth process , also known as the Yule process . The colony starts with cells at time . Assume that the probability that any individual cell divides in the time interval is proportional to for small . Further assume that each cell division is independent of others. Let be the birth rate. The probability of a cell division for a population of cells during is . We assume that the probability that two or more births take place in the time interval is . That is, it can be ignored. Consequently, the probability that no cell divides during is . Note that this process is an example of the Markov chain with states \({n_0}, {n_0 + 1}, {n_0 + 2}...
Generational growth Consider the following scenario (see the figure below): A single individual (cell, organism, etc.) produces descendants with probability , independently of other individuals. The probability of this reproduction, , is known. That individual produces no further descendants after the first (if any) reproduction. These descendants each produce further descendants at the next subsequent time with the same probabilities. This process carries on, creating successive generations. Figure 1. An example of the branching process. Let be the random variable representing the population size (number of individuals) of generation . In the above figure, we have , , , , We shall assume as the initial condition. Ideally, our goal would be to find how the population size grows through generations, that is, to find the probability for e...
In mathematics, we must prove (almost) everything and the proofs must be done logically and rigorously. Therefore, we need some understanding of basic logic. Here, I will informally explain some rudimentary formal logic. Definitions (Proposition): A proposition is a statement that is either true or false. "True" and "false" are called the truth values, and are often denoted and . Here is an example. "Dr. Akira teaches at UBD." is a statement that is either true or false (we understand the existence of Dr. Akira and UBD), hence a proposition. The following statement is also a proposition, although we don't know if it's true or false (yet): Any even number greater than or equal to 4 is equal to a sum of two primes. See also: Goldbach's conjecture Next, we define several operations on propositions. Note that propositions combined with these operations are again propositions. (Conjunction, logical "and"): Let ...
Comments
Post a Comment