Introductory university-level calculus, linear algebra, abstract algebra, probability, statistics, and stochastic processes.
More on the limit of functions
Get link
Facebook
X
Pinterest
Email
Other Apps
-
There are a few variations of limits.
Definition (Divergence of a function)
If the function \(f(x)\) does not converge to any value as \(x \to a\), we say that \(f(x)\) diverges as \(x \to a\). In particular, if the value of \(f(x)\) increases arbitrarily as \(x \to a\), we say that \(f(x)\) diverges to positive infinity and write
\[\lim_{x\to a}f(x) = \infty.\]
If the value of \(f(x)\) is negative and its absolute value increases arbitrarily, we say that \(f(x)\) diverges to negative infinity and write
\[\lim_{x\to a}f(x) = -\infty.\]
Example. Consider the function
\[f(x) = \frac{1}{(x - 1)^2}\]
defined on \(\mathbb{R}\setminus\{1\}\). We have
\[\lim_{x \to 1}f(x) = \infty.\]
You should verify this by drawing a graph. □
There are a few variants of the notion of limit.
Definition (Left and right limits)
We define the left limit of the function \(f(x)\) at \(x=a\) \[\lim_{x \to a -0}f(x) = \alpha\] if the following is satisfied
For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that for any \(x\in\text{dom}(f)\), if \(0 < a - x < \delta\) then \(|f(x) - \alpha| < \varepsilon\)
This mean \(x\) approaches \(a\) from the left (so ``\(x < a\)'' is kept).
We define the right limit of the function \(f(x)\) at \(x=a\) \[\lim_{x \to a +0}f(x) = \alpha\] if the following is satisfied
For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that for any \(x\in\text{dom}(f)\), if \(0 < x - a < \delta\) then \(|f(x) - \alpha| < \varepsilon\).
This mean \(x\) approaches \(a\) from the right (so ``\(a < x\)'' is kept).
Remark. We write \(x \to +0\) instead of \(x \to 0+0\). Similarly \(x\to -0\) rather than \(x \to 0-0\). □
Example. Consider the function
\[f(x) = \frac{x(x + 1)}{|x|}\]
defined on \(\mathbb{R}\setminus\{0\}\).
If \(x > 0\), we have
\[f(x) = \frac{x(x + 1)}{x} = x + 1\]
so that
\[\lim_{x \to +0}f(x) = 1.\]
If \(x < 0\), we have
\[f(x) = \frac{x(x + 1)}{-x} = -x - 1\]
so that
\[\lim_{x \to -0}f(x) = -1.\]
□
Example. For the function \(f(x) = \frac{1}{x}\) defined on \(\mathbb{R}\setminus\{0\}\), we have
We define the limit at \(x \to \infty\) \[\lim_{x \to \infty}f(x) = \alpha\] if the following is satisfied
For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that for any \(x\in\text{dom}(f)\), if \(x > \delta\) then \(|f(x) - \alpha| < \varepsilon\).
We define the limit at \(x \to -\infty\) \[\lim_{x \to -\infty}f(x) = \alpha\] if the following is satisfied
For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that for any \(x\in\text{dom}(f)\), if \(x < -\delta\) then \(|f(x) - \alpha| < \varepsilon\).
Theorem
Let \(f(x)\) be a function defined on the open interval \(I = (a, b)\) \((a < b)\) such that \(\lim_{x\to a+0}f(x) = \alpha\) \((\alpha \in\mathbb{R})\).
For a given \(c\in\mathbb{R}\), if \(f(x) \geq c\) for all \(x\in I\), then \(\alpha \geq c\).
For a given \(d\in\mathbb{R}\), if \(f(x) \leq d\) for all \(x\in I\), then \(\alpha \leq d\).
Proof. We prove only part 1 and prove it by contradiction. Part 2 is similar.
Suppose \(\alpha < c\) and let \(\varepsilon = c - \alpha > 0\). Since \(\lim_{x\to a+0}f(x) = \alpha\), we can find \(\delta > 0\) such that \(0 < x - a < \delta\) implies \(|f(x) - \alpha| < \varepsilon\). But then \(f(x) < \alpha + \varepsilon = c\), which is a contradiction. ■
Theorem
Let \(f(x)\) be a function defined on an interval that includes \(x= a\).
If \(\lim_{x\to a}f(x) = \alpha\) exists, then the corresponding left and right limits also exist and \(\lim_{x\to a+0}f(x) = \lim_{x\to a-0}f(x) = \alpha\).
If both \(\lim_{x\to a+0}f(x)\) and \(\lim_{x\to a-0}f(x)\) exist and \(\lim_{x\to a+0}f(x) = \lim_{x\to a-0}f(x) = \alpha\), then \(\lim_{x\to a}f(x) = \alpha\).
In order to show \(e = \lim_{x\to 0}(1 + x)^{\frac{1}{x}}\), we need to show \(e = \lim_{x\to +0}(1 + x)^{\frac{1}{x}}\) and \(e = \lim_{x\to -0}(1 + x)^{\frac{1}{x}}\). By changing variables \(x = \frac{1}{y}\), \(\lim_{x\to +0}(1 + x)^{\frac{1}{x}} = \lim_{y\to\infty}\left(1 + \frac{1}{y}\right)^y\) and \(\lim_{x\to -0}(1 + x)^{\frac{1}{x}} = \lim_{y\to -\infty}\left(1 + \frac{1}{y}\right)^y\). Furthermore, by changing variables \(y = -t\), assuming \(t > 1\), we have
Since \(\lim_{t\to\infty}\left(1 + \frac{1}{t-1}\right) = 1\), we can see that we only need to show \(e = \lim_{x\to\infty}\left(1 + \frac{1}{x}\right)^{x}\).
For any \(x \geq 1\), we can find \(n\in\mathbb{N}\) such that
A similar result hold for the convergence of functions.
Theorem (Cauchy criterion for the right limit of a function)
Let \(f(x)\) be a function on \(I = (a,b]\). The right limit \(\lim_{x\to a+0}f(x)\) exists if and only if the following condition is satisfied:
For any \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for all \(x, y\in I\), if \(a < x < a + \delta\) and \(a < y < a + \delta\) then \(|f(x) - f(y)| < \varepsilon\). (\(\star\))
Remark. Similarly, the left limit \(\lim_{x\to b-0}f(x)\) exists if and only if
For any \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for all \(x, y\in I\), if \(b - \delta < x < b\) and \(b -\delta < y < b\) then \(|f(x) - f(y)| < \varepsilon\).
The limit \(\lim_{x\to\infty}f(x)\) exists if and only if
For any \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for all \(x, y\in I\), if \(x > \delta\) and \(y > \delta\) then \(|f(x) - f(y)| < \varepsilon\).
The limit \(\lim_{x\to-\infty}f(x)\) exists if and only if
For any \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for all \(x, y\in I\), if \(x < -\delta\) and \(y < -\delta\) then \(|f(x) - f(y)| < \varepsilon\).
□
Proof. (\(\Rightarrow\)) Suppose \(\lim_{x\to a+0}f(x)\) exists. Then there exists some real number \(\alpha\) such that \(\lim_{x\to a+0}f(x) = \alpha\). For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that, for all \(x\in I\), if \(a < x < a + \delta\) then \(|f(x) - \alpha| < \frac{\varepsilon}{2}\). Let \(x\) and \(y\) be arbitrary real numbers such that \(a < x < a + \delta\) and \(a < y < a + \delta\). Then
(\(\Leftarrow\)) Suppose (\(\star\)) is satisfied. Let us define a sequence \(\{a_n\}\) by \(a_n = a + \frac{b-a}{n}\), \(n\in\mathbb{N}\). For any \(\varepsilon > 0\), choose a \(\delta > 0\) satisfying (\(\star\)). By Archimedes' principle, we can find an \(N\in \mathbb{N}\) such that \(N\delta > b - a\). Then for any \(n \geq N\), \(a_n - a = \frac{b-a}{n} < \frac{b-a}{N} < \delta\) so that \(a < a_n < a + \delta\). Therefore by (\(\star\)), for all \(n, m > N\), \(|f(a_n) - f(a_m)| < \varepsilon\) so that \(\{f(a_n)\}\) is a Cauchy sequence, and hence this sequence converges: \(\lim_{n\to\infty}f(a_n) = \alpha\) for some \(\alpha \in \mathbb{R}\).
Now, let us show that \(\lim_{x\to a+0}f(x) = \alpha\). By (\(\star\)), for any \(\varepsilon > 0\), we can find \(\delta > 0\) such that for all \(x,y \in (a, a+\delta)\), \(|f(x) - f(y)|< \frac{\varepsilon}{2}\). Also, since \(\lim_{n\to\infty}f(a_n) = \alpha\), we can find an \(N\in\mathbb{N}\) such that for all \(n \geq N\), \(|f(a_n) - \alpha| < \frac{\varepsilon}{2}\). If \(a < x < a + \delta\), choose \(n \geq N\) such that \(a < a_n < a+\delta\). Then
Open sets In \(\mathbb{R}\), we have the notion of an open interval such as \((a, b) = \{x \in \mathbb{R} | a < x < b\}\). We want to extend this idea to apply to \(\mathbb{R}^n\). We also introduce the notions of bounded sets and closed sets in \(\mathbb{R}^n\). Recall that the \(\varepsilon\)-neighbor of a point \(x\in\mathbb{R}^n\) is defined as \(N_{\varepsilon}(x) = \{y \in \mathbb{R}^n | d(x, y) < \varepsilon \}\) where \(d(x,y)\) is the distance between \(x\) and \(y\). Definition (Open set) A subset \(U\) of \(\mathbb{R}^n\) is said to be an open set if the following holds: \[\forall x \in U ~ \exists \delta > 0 ~ (N_{\delta}(x) \subset U).\tag{Eq:OpenSet}\] That is, for every point in an open set \(U\), we can always find an open ball centered at that point, that is included in \(U\). See the following figure. Perhaps, it is instructive to see what is not an open set. Negating (Eq:OpenSet), we have \[\exists x \in U ~ \forall \delta > 0 ~ (N_{\delta}(x) \not
We would like to study multivariate functions (i.e., functions of many variables), continuous multivariate functions in particular. To define continuity, we need a measure of "closeness" between points. One measure of closeness is the Euclidean distance. The set \(\mathbb{R}^n\) (with \(n \in \mathbb{N}\)) with the Euclidean distance function is called a Euclidean space. This is the space where our functions of interest live. The real line is a geometric representation of \(\mathbb{R}\), the set of all real numbers. That is, each \(a \in \mathbb{R}\) is represented as the point \(a\) on the real line. The coordinate plane , or the \(x\)-\(y\) plane , is a geometric representation of \(\mathbb{R}^2\), the set of all pairs of real numbers. Each pair of real numbers \((a, b)\) is visualized as the point \((a, b)\) in the plane. Remark . Recall that \(\mathbb{R}^2 = \mathbb{R}\times\mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}\) is the Cartesian product of \(\mathbb{R}\) with i
We can use multiple integrals to compute areas and volumes of various shapes. Area of a planar region Definition (Area) Let \(D\) be a bounded closed region in \(\mathbb{R}^2\). \(D\) is said to have an area if the multiple integral of the constant function 1 over \(D\), \(\iint_Ddxdy\), exists. Its value is denoted by \(\mu(D)\): \[\mu(D) = \iint_Ddxdy.\] Example . Let us calculate the area of the disk \(D = \{(x,y)\mid x^2 + y^2 \leq a^2\}\). Using the polar coordinates, \(x = r\cos\theta, y = r\sin\theta\), \(dxdy = rdrd\theta\), and the ranges of \(r\) and \(\theta\) are \([0, a]\) and \([0, 2\pi]\), respectively. Thus, \[\begin{eqnarray*} \mu(D) &=& \iint_Ddxdy\\ &=&\int_0^a\left(\int_0^{2\pi}rd\theta\right)dr\\ &=&2\pi\int_0^a rdr\\ &=&2\pi\left[\frac{r^2}{2}\right]_0^a = \pi a^2. \end{eqnarray*}\] □ Volume of a solid figure Definition (Volume) Let \(V\) be a solid figure in the \((x,y,z)\) space \(\mathbb{R}^3\). \(V\) is sai
Comments
Post a Comment